Friday, September 11, 2015

Page 372

Problem 5

Problem. Evaluate the expression arccos $\frac{1}{2}$ without using a calculator.
Solution. The angle whose cosine is $\frac{1}{2}$ is $\frac{\pi}{3}$.

Problem 7

Problem. Evaluate the expression $\arctan \frac{\sqrt{3}}{3}$ without using a calculator.
Solution. The angle whose tangent is $\frac{\sqrt{3}}{3}$ is $\frac{\pi}{6}$.

Problem 9

Problem. Evaluate the expression $\operatorname{arccsc}(-\sqrt{2})$ without using a calculator.
Solution. Because of the minus sign, the value must be in the fourth quadrant, where csc is negative. The value is $-\frac{\pi}{4}$.

Problem 15

Problem. Use the figure to write the expression $\cos y$ in algebraic form, given $y=$ $\arccos x$, where $0<y<\pi / 2$.

Solution. $\cos y=x$.

Problem 17

Problem. Use the figure to write the expression $\tan y$ in algebraic form, given $y=$ $\arccos x$, where $0<y<\pi / 2$.
Solution. The opposite side is $\sqrt{1-x^{2}}$, so $\tan y=\frac{\sqrt{1-x^{2}}}{x}$.

Problem 19

Problem. Use the figure to write the expression $\sec y$ in algebraic form, given $y=$ $\arccos x$, where $0<y<\pi / 2$.
Solution. $\sec y=\frac{1}{x}$.

Problem 21

Problem. Evaluate each expression without using a calculator
(a) $\sin \left(\arctan \frac{3}{4}\right)$
(b) $\sec \left(\arcsin \frac{4}{5}\right)$

Solution. (a) Let $\theta=\arctan \frac{3}{4}$. The opposite side is 3 and the adjacent side is 4 , so the hypotenuse is 5 . Thus, $\sin \theta=\frac{3}{5}$.
(b) Let $\theta=\arcsin \frac{4}{5}$. The opposite side is 4 and the hypotenuse is 5 , so the adjacent side is 3 . Thus, $\sec \theta=\frac{5}{3}$.

Problem 22

Problem. Evaluate each expression without using a calculator
(a) $\tan \left(\arccos \frac{\sqrt{2}}{2}\right)$
(b) $\cos \left(\arcsin \frac{5}{13}\right)$

Solution. (a) Let $\theta=\arccos \frac{\sqrt{2}}{2}$. The adjacent side is $\sqrt{2}$ and the hypotenuse is 2 , so the opposite side is $\sqrt{2}$. Thus, $\tan \theta=\frac{\sqrt{2}}{\sqrt{2}}=1$.
(b) Let $\theta=\arcsin \frac{5}{13}$. The opposite side is 5 and the hypotenuse is 13 , so the adjacent side is 12 . Thus, $\cos \theta=\frac{12}{13}$.

Problem 23

Problem. Evaluate each expression without using a calculator
(a) $\cot \left[\arcsin \left(-\frac{1}{2}\right)\right]$
(b) $\csc \left[\arctan \left(-\frac{5}{12}\right)\right]$

Solution. (a) Let $\theta=\arcsin \left(-\frac{1}{2}\right)$. The opposite side is -1 and the hypotenuse is 2 , so the adjacent side is $\sqrt{3}$. Thus, $\cot \theta=\frac{\sqrt{3}}{-1}=-\sqrt{3}$.
(b) Let $\theta=\arctan \left(-\frac{5}{12}\right)$. The opposite side is -5 and the adjacent side is 12 , so the hypotenuse is 13 . Thus, $\csc \theta=-\frac{5}{13}$.

Problem 24

Problem. Evaluate each expression without using a calculator
(a) $\sec \left[\arctan \left(-\frac{3}{5}\right)\right]$
(b) $\tan \left[\arcsin \left(-\frac{5}{6}\right)\right]$

Solution. (a) Let $\theta=\arctan \left(-\frac{3}{5}\right)$. The opposite side is -3 and the adjacent side is 5 , so the hypotenuse is $\sqrt{34}$. Thus, $\sec \theta=\frac{\sqrt{34}}{5}$.
(b) Let $\theta=\arcsin \left(-\frac{5}{6}\right)$. The opposite side is -5 and the hypotenuse is 6 , so the adjacent side is $\sqrt{11}$. Thus, $\tan \theta=-\frac{5}{\sqrt{11}}$.

Problem 25

Problem. Write the expression $\cos (\arcsin 2 x)$ in algebraic form.
Solution. Let $\theta=\arcsin 2 x$. Then the opposite side is $2 x$ and the hypotenuse is 1 . So the adjacent side would be $\sqrt{1-4 x^{2}}$ and $\cos \theta=\sqrt{1-4 x^{2}}$.

Problem 26

Problem. Write the expression $\sec (\arctan 4 x)$ in algebraic form.
Solution. Let $\theta=\arctan 4 x$. Then the opposite side is $4 x$ and the adjacent side is 1 . So the hypotenuse would be $\sqrt{1+16 x^{2}}$ and $\sec \theta=\sqrt{1+16 x^{2}}$.

